Abstract

We have recently demonstrated, using electron paramagnetic resonance (EPR) spectroscopy, that insulin receptor internalization in response to insulin incubation (down-regulation) in human erythrocytes is accompanied by a transient decrease in membrane order, as measured by the 2T' parallel order parameter. Since membrane lipids play such an important role in receptor internalization, we investigated the possible effects that an alteration of the normally-occurring lipid profile might have on down-regulation and the concomitant transient decrease in membrane order. Consequently, human erythrocytes enriched with cholesterol and erythrocytes from cirrhotic patients were examined, because both of these groups of cells have a higher cholesterol/phospholipid molar ratio (CH/PL) than controls. The 5-nitroxystearate spin label, which inserts into the lipid bilayer of cell membranes, was used to monitor changes in 2T' parallel for a 3-h period at 37 degrees C. We report here that both cholesterol-enriched and cirrhotic erythrocytes do not down-regulate, as demonstrated by binding assays, and that they do not show the typical transient decrease in membrane order observed in controls. The results seem to indicate that a more ordered membrane inhibits internalization of the insulin receptor in erythrocytes, and that an increase in membrane disorder is necessary for insulin receptor down-regulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.