Abstract

Planktonic freshwater filamentous cyanobacterium Trichormus variabilis ATCC 29413 (previously known as Anabaena variabilis) can differentiate heterocysts and akinetes to survive under different stress conditions. Whilst heterocysts enable diazotrophic growth, akinetes are spore-like resting cells that make the survival of the species possible under adverse growth conditions. Under suitable environmental conditions, they germinate to produce new vegetative filaments. Several morphological and physiological changes occur during akinete formation and germination. Here, using scanning electron microscopy (SEM), we found that the mature akinetes had a wrinkled envelope, and the surface of the envelope smoothened as the cell size increased during germination. Thereupon, the akinete envelope ruptured to release the short emerging filament. Focused ion beam–scanning electron microscopy (FIB/SEM) tomography of immature akinetes revealed the presence of cytoplasmic granules, presumably consisting of cyanophycin or glycogen. In addition, the akinete envelope architecture of different layers, the exopolysaccharide and glycolipid layers, could be visualized. We found that this multilayered envelope helped to withstand osmotic stress and to maintain the structural integrity. Furthermore, by fluorescence recovery after photobleaching (FRAP) measurements, using the fluorescent tracer calcein, we found that intercellular communication decreased during akinete formation as compared with the vegetative cells. In contrast, freshly germinating filaments restored cell communication.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call