Abstract
Transient cerebral ischemia was produced in rats using the four-vessel occlusion model. After 30 min ischemia and 2, 4, 8, or 24 h of recirculation, total RNA was isolated from the cortex, striatum and hippocampus and reverse-transcribed into cDNA. Endoplasmic reticulum (ER) calcium-ATPase (SERCA, subunit 2b) cDNA was amplified using appropriate primers. Ischemia-induced changes in SERCA mRNA levels were analyzed by quantitative polymerase chain reaction (PCR). For quantification, each PCR reaction was run in the presence of an internal standard. In control brains SERCA mRNA levels amounted to 392 ± 43, 431 ± 86, and 409 ± 21 μg mRNA/ g total RNA in the cortex, striatum and hippocampus, respectively. SERCA mRNA levels did not change significantly during the first 8 h of recovery. After 24 h of recovery, however, SERCA mRNA levels decreased sharply in the hippocampus and striatum (P < 0.001 versus control) but not in the cortex. It is concluded that in vulnerable brain structures a post-ischemic disturbance in ER calcium homeostasis may limit the recovery of neurons from metabolic stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.