Abstract
We explored changes in multiscale brain signal complexity and power-law scaling exponents of electroencephalogram (EEG) frequency spectra across several distinct global states of consciousness induced in the natural physiological context of the human sleep cycle. We specifically aimed to link EEG complexity to a statistically unified representation of the neural power spectrum. Further, by utilizing surrogate-based tests of nonlinearity we also examined whether any of the sleep stage-dependent changes in entropy were separable from the linear stochastic effects contained in the power spectrum. Our results indicate that changes of brain signal entropy throughout the sleep cycle are strongly time-scale dependent. Slow wave sleep was characterized by reduced entropy at short time scales and increased entropy at long time scales. Temporal signal complexity (at short time scales) and the slope of EEG power spectra appear, to a large extent, to capture a common phenomenon of neuronal noise, putatively reflecting cortical balance between excitation and inhibition. Nonlinear dynamical properties of brain signals accounted for a smaller portion of entropy changes, especially in stage 2 sleep.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.