Abstract

Many studies on neuronal plasticity have been conducted in the hippocampus and sensory cortices. In female rats in the estrus phase, when there is a low concentration of estradiol in the blood, there is a reduction in the dendritic spine density of CA1 neurons, while an increase in dendritic spines has been observed during metestrus, when progesterone levels are high. In comparison with the hippocampus, less information is known about dendritic remodeling of the motor cortex. Thus, the objective of the present study was to evaluate the neuronal morphology of pyramidal cells of layer V of the motor cortex in each phase of the estrous cycle. For this, we used Long-Evans strain rats and formed 4 experimental groups according to the phase of the estrous cycle at the moment of sacrifice: proestrus, estrus, metestrus, or diestrus. All animals were gently monitored regarding the expression of one estrous cycle in order to determine the regularity of the cycle. We obtained the brains in order to evaluate the neuronal morphology of neurons of layer V of the primary motor cortex following the Golgi-Cox method and Sholl analysis. Our results show that the dendritic arborization of neurons of rats sacrificed in the metestrus phase is reduced compared to the other phases of the estrous cycle. However, we did not find changes in dendritic spine density between experimental groups. When comparing our results with previous data, we can suggest that estrogens and progesterone differentially promote plasticity events in pyramidal neurons between different brain regions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call