Abstract

Reperfusion of hearts with a Ca2+-containing medium after a perfusion period in Ca2+-free medium results in irreversible cell damage (calcium paradox). In this investigation we have studied coronary flow and cyclic AMP and cyclic GMP levels after several periods of Ca2+-free perfusion in isolated rat hearts. We also investigated the effects of papaverine (Pap), noradrenaline (NA), acetylcholine (ACh) and absence of inorganic phosphate during Ca2+-free perfusion on coronary flow (CF) and cyclic nucleotide levels. Inability of the heart to recover contractile activity with development of contracture during the reperfusion period was accepted as indicative of the calcium paradox. Ca2+-free perfusion alone and NA and absence of inorganic phosphate during the Ca2+-free perfusion period increased CF, whereas Pap and ACh decreased it. However, only Ca2+-free perfusion and NA elevated cyclic AMP. On the other hand, Pap and ACh increased cyclic GMP (with a transient rise of cyclic AMP in Pap infusion), and absence of inorganic phosphate decreased both cyclic AMP and cyclic GMP. Pap, ACh and absence of phosphate prevented the calcium paradox. Our study suggests that increased cyclic AMP during the Ca2+-free perfusion may contribute, with the other factors, to the occurrence of the calcium paradox.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call