Abstract
Stroke, a major cause of disability, disrupts brain function and motor skills. Previous research has mainly focused on reorganization of the motor system post-stroke, but the effects on other brain areas and their influence on recovery is poorly understood. Here, we use functional neuroimaging in a nonhuman primate model (23 male Cynomolgus Macaques), we explore how ischemic stroke affects whole-brain cortical architecture and its relation to spontaneous behavioral recovery. By projecting patterns of cortical functional connectivity onto a low-dimensional manifold space, we find that several regions in both sensorimotor cortex and higher-order transmodal cortex exhibit significant shifts in their manifold embedding from pre- to post-stroke. Furthermore, we observe that changes in default mode and limbic network regions, and not preserved sensorimotor cortical regions, are associated with animal behavioral recovery post-stroke. These results establish the whole-brain functional changes associated with stroke, and suggest an important role for higher-order transmodal cortex in post-stroke outcomes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.