Abstract

To compare the preoperative and postoperative measurement of corneal biomechanical properties and intraocular pressure (IOP) using Goldmann applanation tonometry (GAT), the ocular response analyzer (ORA), and the Pascal dynamic contour tonometer (PDCT) in eyes undergoing myopic laser in situ keratomileusis (LASIK). Prospective, nonrandomized clinical trial. IOP was measured in 66 myopic eyes before and after LASIK by GAT, ORA, and PDCT in a randomized sequence. Metrics of corneal biomechanical properties (corneal hysteresis [CH], corneal resistance factor [CRF], and ocular pulse amplitude [OPA]) were recorded. After LASIK, there was a reduction in mean corneal pachymetry of 90.2 mum and in IOP measurements with GAT (Delta = -1.8 +/- 2.8 mm Hg; P < .01), ORA-Goldmann (Delta = -4.6 +/- 2.8 mm Hg, P < .01), and ORA-corneal compensated (Delta - 2.1 +/- 2.6 mm Hg; P < .05). However, there was no statistically significant difference between preoperative and postoperative IOP measurements taken by PDCT (Delta = -0.5 +/- 2.6 mm Hg). Postoperatively, CRF decreased by 28.6% (P < .01), CH by 16.2% (P < .01), and OPA by 1.8% (P = .32). Measurement of IOP with PDCT appears to be relatively immune to changes in corneal biomechanics and pachymetry after LASIK, in comparison to GAT and ORA measures of IOP. PDCT and ORA both showed statistically lower variation in measurement than GAT. LASIK produced a marked decline in CH and CRF, which may reflect respective changes in the viscous and elastic qualities of the post-LASIK cornea. In contrast, there was no statistical change in OPA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call