Abstract

Sodium caseinate is a commonly used emulsifier in foods, as it adsorbs on the surface of oil droplets and stabilizes them via electrostatic and steric stabilization, forming a polyelectrolyte layer at the interface. Since the protein interface is affected by varying environmental conditions such as pH, ionic strength, concentration of unadsorbed polymers, these emulsions are prone to a variety of destabilization mechanisms. The objective of the present work was to observe the destabilization of sodium caseinate stabilized oil in water emulsions using electroacoustic spectroscopy. This technique can be utilized for the characterization of concentrated colloidal systems in situ, without dilution. The electroacoustic and ultrasonic properties of soy oil in water emulsions were determined for sodium caseinate stabilized emulsions under conditions known to cause destabilization. Ultrasonic attenuation and electrophoretic mobility (ζ-potential) could clearly follow the changes occurring in the emulsion droplets, under minimal sample disruption. This is critical for these systems in a very fragile, metastable state. The emulsions were stable to the addition of high methoxyl pectin (HMP) up to 0.1% HMP. Addition of free sodium caseinate induced depletion flocculation, causing a decrease in the attenuation and electrophoretic mobility measured. The presence of HMP limited depletion interactions. Acidification of the emulsion droplets resulted in a clear sol–gel transition, as shown by a steep increase in the particle size and a decrease in attenuation. Again, destabilization was limited by HMP addition. It was concluded that ultrasonics and electroacoustics are suitable techniques to understand the details of the destabilization processes occurring to food emulsions, measured in situ.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call