Abstract

The radiative heating increase due to increased CO2 concentration is the primary source for the rapid adjustment of atmospheric circulation and clouds. In this study, we investigate the rapid adjustment resulting from an instantaneous doubling of CO2 and its physical mechanism using a multiscale modeling framework (MMF). The cloud-resolving model component of this MMF includes a sophisticated third-order turbulence closure and the MMF simulates realistic shallow and deep cloud climatology and boundary layer turbulence. Although the simulated cloud adjustment and its mechanism generally agree with earlier studies with conventional global climate models and another MMF with a lower-order turbulence closure, this MMF simulates an increase in the global-mean shortwave and net cloud radiative cooling and a negative cloud radiative effect change due to cloud adjustment. This result is related to the large increase in low-level clouds over the extratropical and subtropical oceans, resulting from reduced cloud-top entrainment implied from strengthened inversion. The downshift of planetary boundary layer and low-level clouds is generally weaker than that simulated by other models, which is due to reduction of shallow cumulus in the ascending and weak subsidence circulation regimes but to increase of stratocumulus in the strongest subsidence regime. Optically thicker stratocumulus compensates for reduced cooling by shallow cumulus. The reduced strength of all oceanic circulation regimes, which may be contributed by weakened energy transport resulting from water vapor and cloud CO2 masking effects, not only reduces optical depth of convective clouds but also shifts cloud coverage to lands where deep convection is enhanced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.