Abstract

Hassallia antarctica is a terrestrial cyanobacterium colonizing various habitats in Antarctica such as soil surface, microbiological mats and seepages. H. antarctica represents one of the cyanobacterial species forming biodiversity of terrestrial autotrophs of James Ross Island, Antarctica. It is a filamentous cyanobacterium composing blackish fasciculated clusters thanks to false branching. In our study, sensitivity of the species to dehydration and salt stress was studied. We used H. antarctica culture (CCALA 956) grown on Z liquid medium. Clusters of H. antarctica were placed on wet filter paper and dried naturally at 5°C. During gradual dehydration, relative water content (RWC) was evaluated gravimetrically simultaneously with chlorophyll fluorescence measurements. Slow Kautsky kinetics and the chlorophyll fluorescence parameters (FV/FM, ФPSII) were used to assess dehydration-related decrease in primary photosynthetic processes. It was found that H. antarctica, contrastingly to other terrestrial cyanobacteria from polar habitats, was not able to maintain photosynthetic processes at RWCs as low as 20%. Even during initial phase of dehydration (RWC of 95%) rapid decline in FV/FM occured. Resistance of H. antarctica to osmotic stress was studied by time courses of the chlorophyll fluorescence parameter in response to 3.0, 0.3, and 0.03 M NaCl solution. Both shape of slow Kautsky kinetics and numeric values of chlorophyll fluorescence parameters were affected by osmotic stress. While full inhibitory effect was apparent in 3.0 M NaCl treatment immediately, the salt stress-induced decline in chlorophyll fluorescence parameters was observed at 0.03 M NaCl even after 8 hours of exposition. It was, therefore, concluded that H. antarctica exhibited high resistance to osmotic stress which may help the species to cope with repetitive dehydration events that happen in the field during austral summer season in Antarctica, James Ross Island in particular.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call