Abstract

AbstractSnowpacks are natural water reservoirs providing a considerable amount of water for humans and ecosystems. However, current global snow products (e.g., ESA GlobSnow v3.0), lack high spatial resolution and regional calibrations necessary to capture the high heterogeneity of snow water equivalents (SWEs) in complex Asian mountainous terrains. Therefore, our understanding of snow drought characteristics in China remains limited. Herein, we used an improved SWE product calibrated specifically for China to explore the characteristics of snow droughts, delineated by a standardized SWE index (SWEI) between 1993 and 2019. Our analysis was focused over three main snow‐covered regions of China: Qinghai–Tibet Plateau (QTP), northern Xinjiang, Northeast China. Especially during the period from 1993 to 2010, we found that the SWEI increased significantly at rates of 0.022/yr (Northeast China), 0.017/yr (northern Xinjiang), and 0.011/yr (QTP) (p < 0.01, Mann‐Kendall trend test). Increased SWEI contributed to decreasing snow drought events across China, with an obvious short‐term characteristic, whilst area proportion of the identified 1‐month snow droughts was above 46.5% across three regions. Furthermore, we found that the occurrence of snow droughts was likely mediated by large‐scale atmospheric circulation, since increased water vapor transport caused a significant vapor flux convergence in cold seasons over three regions, especially in northern Xinjiang and Northeast China.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.