Abstract

The apple snail, Pomacea canaliculata, is an invasive freshwater snail. It increases its cold hardiness before winter. However, the physiological mechanism of cold hardiness in molluscs is poorly understood, especially in freshwater molluscs. In this study, we examined the changes in low molecular weight compounds, glycogen and lipids, in the body of P. canaliculata in association with the development of cold hardiness. When snails without cold hardiness were experimentally cold-acclimated, the amount of glycerol, glutamine, and carnosine increased, while glycogen and phenylalanine decreased. Overwintering cold-tolerant snails collected from a drained paddy field in November also showed increased glycerol in their bodies with decreasing glycogen concentration, compared to summer snails collected from a submerged field. Water content also decreased during the cold acclimation, although the water loss was minimal. These results indicate that the freshwater snail, P. canaliculata enhances cold hardiness by accumulation of some kinds of low molecular weight compounds in its body as some insects do. However, the actual function of each low molecular compound is still unknown.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.