Abstract

High dietary cholesterol and low dietary docosahexaenoic acid (DHA) intake are risk factors for Alzheimer's disease (AD). However, it is unclear how these components influence the course of the disease. We investigated the effects of dietary lipids on beta-amyloid deposition and blood circulation in the brains of 18-month-old APP/PS1 mice. Starting at 6 months of age, mice were fed a regular rodent chow, a Typical Western Diet (TWD) containing 1% cholesterol, or a diet with a high (0.5%) level of DHA for 12 months. Relative cerebral blood volume (rCBV) and flow (CBF) were determined with (2)H MR spectroscopy and gradient echo contrast enhanced MRI. Deposition of beta-amyloid was visualized in fixed brain tissue with immunohistochemistry. The TWD diet increased plaque burden in the dentate gyrus of the hippocampus, but did not significantly reduce rCBV. In contrast, the DHA-enriched diet increased rCBV without changing blood flow indicating a larger circulation in the brain probably due to vasodilatation and decreased the amount of vascular beta-amyloid deposition. Together, our results indicate that the long-term intake of dietary lipids can impact both brain circulation and beta-amyloid deposition, and support the involvement of hemodynamic changes in the development of AD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.