Abstract
A characteristic response to mesangial cell injury is proliferation, which is closely linked to mesangial matrix accumulation and the progression of glomerular disease. Cell proliferation in non-renal cells in vitro is regulated at the level of the cell-cycle by specific cyclins and their catalytic partners, cyclin dependent kinases (CDK). Cyclin kinase inhibitors (CKI) prevent proliferation by inhibiting cell-cycle progression. However, the expression of cell-cycle regulatory proteins in the kidney and in renal disease is unknown. To determine this we studied the expression of cell-cycle proteins in vivo in normal rats and rats with experimental mesangial proliferative glomerulonephritis (Thy1 model). Normal quiescent rat glomeruli have a differential expression for CKI's, where p27Kip1 is highly expressed, and the levels for p21 (Cip1, Waf1, Sdi1, Cap20) (p21) are low. The onset of mesangial cell proliferation in Thy1 glomerulonephritis is associated with a reduction in p27Kip1 levels when mesangial cell proliferation is maximal. Mesangial cell proliferation in vivo is also associated with an increase in glomerular expression of cyclin A, and an increase in expression and activity for CDK2. The resolution of mesangial cell proliferation was associated with a return to baseline levels for p27Kip1, while the expression for p21 increased substantially. Furthermore, mesangial cell p21 expression was maintained following the resolution of proliferation. These results provide evidence for a complex interplay of cell-cycle regulatory proteins during the glomerular response to injury in vivo. The marked increase in CDK2 expression during mesangial cell proliferation and the sustained increase in p21 expression following the resolution of mesangial cell proliferation suggests that the in vivo expression of certain cell-cycle proteins may differ from that described in non-renal cells in vitro.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.