Abstract

Epizootic Rabbit Enteropathy (ERE) is a severe disease of unknown aetiology that mainly affects post-weaning animals. Its incidence can be prevented by antibiotic treatment suggesting that bacterial elements are crucial for the development of the disease. Microbial dynamics and host responses during the disease were studied. Cecal microbiota was characterized in three rabbit groups (ERE-affected, healthy and healthy pretreated with antibiotics), followed by transcriptional analysis of cytokines and mucins in the cecal mucosa and vermix by q-rtPCR. In healthy animals, cecal microbiota with or without antibiotic pretreatment was very similar and dominated by Alistipes and Ruminococcus. Proportions of both genera decreased in ERE rabbits whereas Bacteroides, Akkermansia and Rikenella increased, as well as Clostridium, γ-Proteobacteria and other opportunistic and pathogenic species. The ERE group displayed remarkable dysbiosis and reduced taxonomic diversity. Transcription rate of mucins and inflammatory cytokines was very high in ERE rabbits, except IL-2, and its analysis revealed the existence of two clearly different gene expression patterns corresponding to Inflammatory and (mucin) Secretory Profiles. Furthermore, these profiles were associated to different bacterial species, suggesting that they may correspond to different stages of the disease. Other data obtained in this work reinforced the notion that ERE morbidity and mortality is possibly caused by an overgrowth of different pathogens in the gut of animals whose immune defence mechanisms seem not to be adequately responding.

Highlights

  • The 19th century witnessed the emergence of animal fancy and rabbits (Oryctolagus cuniculus) began to be raised as pets, and at present days they are among the most important laboratory models

  • Bacterial populations in the cecum of healthy rabbits A total of 89,091 16S rRNA double stranded sequence reads were obtained from 10 cecal samples of healthy individuals fed with non-medicated feed

  • Capillary electrophoresis single-stranded conformation polymorphism (CE-SSCP) and denaturing gradient gel electrophoresis (DGGE) were useful to determine the similarity between bacterial populations of the cecal content and soft faeces [20] on diets with different fibre content [21] and to draw a general quantitative map of the evolution of the microbiota along the rabbit’s life [4]

Read more

Summary

Introduction

The 19th century witnessed the emergence of animal fancy and rabbits (Oryctolagus cuniculus) began to be raised as pets, and at present days they are among the most important laboratory models. Coprophagy (caecotrophy) is a very characteristic habit of this species that aids to complete the digestion of vegetable components, facilitates the assimilation of proteins and other nutrients synthesized by cecal bacteria and maintains gut bacterial populations. Intestinal health of domestic rabbits is quite delicate and any disruption of the digestive process results in gastrointestinal diseases, most frequently related to diet or stress [1]. A high incidence of digestive diseases of unknown aetiology in young mammals is often related to distortions in microbiota composition [2]. The contribution of the gastrointestinal tract microbiota towards mammalian host health and performance is widely accepted. Previous studies on rabbit cecal microbiota performed using classical culture-based techniques [3] and recently, by molecular techniques [4], showed that bacterial species are mainly strict anaerobes with predominance of the phylum Firmicutes over Bacteroides-Prevotella

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call