Abstract

The objectives of this study were: (1) to determine carbon stock changes in the soil and forest floor of black pine (Pinus nigra subsp. pallasiana) plantations in Turkey; (2) to determine the effects of thinning on annual carbon accumulation in both; and, (3) to investigate relationships between annual carbon storage in soil and forest floor and stand characteristics of black pine. Samples were taken in 90 plots from stands at the pole (dbh = 11.0–19.9 cm) and sawlog (dbh = 20.0–35.9 cm) stages. Carbon analyses of soil and forest floor samples showed that in unthinned plantations significant organic carbon was sequestered an average of 1.47 Mg ha−1 a−1 in the soil and 0.20 Mg ha−1 a−1 in the forest floor. Organic carbon sequestered annually in the soil was significantly lower in thinned than in unthinned stands, while differences in the forest floor were insignificant. There were positive correlations between carbon sequestered in the soil and stand age, average DBH, mean stand height, basal area, and site index. Carbon sequestered the forest floor increased with basal area. As a result, carbon sequestered in the soil should not be ignored in greenhouse gas inventories because carbon stored belowground was approximately 70% of the aboveground pool.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call