Abstract

The purpose of this study was to establish whether suppression of angiogenesis by nitric oxide synthase (NOS) inhibition in skeletal muscles exposed to long-term activity can be explained by changes in capillary shear stress linked to the lack of nitric oxide production. Capillary shear stress was calculated from diameters (d) and red blood cell velocities (V(rbc)) measured at rest and after acute contractions in epi-illuminated extensor digitorum longus muscles of control rats and those in which ankle flexors had been stimulated via implanted electrodes (10 Hz, 8 h x day(-1)) for 2 or 7 days without and with inhibition of nitric oxide synthase activity by N(omega)-nitro-L-arginine (L-NNA, 3-4 mg x day(-1) in drinking water). Neither chronic electrical stimulation nor L-NNA treatment altered capillary diameters. Capillary V(rbc) and shear stress (SS) were doubled in muscles after 2 days stimulation (298 +/- 22 microm x s(-1) and 11.4 +/- 1.0 dyne x cm(-2), respectively, p < .005) compared to controls (148 +/- 18 microm x s(-1) and 5.6 +/- 0.8 dyne x cm(-2)) but normalized after 7 days (153 +/- 27 microm x s(-1) and 6.2 +/- 1.0 dyne x cm(-2)), when the capillary bed is known to be enlarged. L-NNA, which increased blood pressure in all treated animals, abolished the increase in capillary SS after 2 days stimulation and decreased SS after 7 days. These data support a role for NO in the early elevation of capillary shear stress that initiates angiogenesis in stimulated muscles, likely via modulation of upstream vascular resistance, and could explain the lack of capillary growth in stimulated muscles when nitric oxide generation is suppressed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.