Abstract

Estimates of the effect of increased global atmospheric CO(2) levels on oceanic primary productivity depend on the physiological responses of contemporary phytoplankton populations. However, microalgal populations will possibly adapt to rising CO(2) levels in such a way that they become genetically different from contemporary populations. The unknown properties of these future populations introduce an undefined error into predictions of C pool dynamics, especially the presence and size of the biological C pump. To address the bias in predictions introduced by evolution, we measured the kinetics of CO(2) uptake in populations of Chlamydomonas reinhardtii that had been selected for growth at high CO(2) for 1000 generations. Following selection at high CO(2), the populations were unable to induce high-affinity CO(2) uptake, and one line had a lower rate of net CO(2) uptake. We attribute this to conditionally neutral mutations in genes affecting the C concentrating mechanism (CCM). Lower affinity CO(2) uptake, in addition to smaller population sizes, results in a significant reduction in net CO(2) uptake of about 38% relative to contemporary populations under the same conditions. This shows how predictions about the properties of communities in the future can be influenced by the effect of natural selection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.