Abstract

We studied changes in macrobenthic communities following the environmental clean-up of metal-polluted (cadmium, nickel, and cobalt) sediments in Foundry Cove, a small inlet within the Hudson River estuary of New York. We used a BACI-style experiment to test the hypotheses that high levels of cadmium in sediments change macrobenthic assemblages relative to unpolluted areas, and removal of metals (especially cadmium) by dredging will restore the benthos, such that benthic fauna in Foundry Cove are not different from unpolluted areas. In 1984, prior to the restoration work, there were no significant differneces between macrobenthic assemblages in polluted and unpolluted locations, indicating that cadmium had little effect on community structure. The lack of an observed toxicity effect may have been caused by the compensatory evolution of resistance to cadmium in dominant organisms. Six years after the restoration work and despite a substantial reduction in metal pollution, there were lower abundances of oligochaetes, nematodes, and chironomids and a higher abundance of polychaetes at Foundry Cove relative to reference locations. Correlative analyses identified greater sediment compaction caused by dredging at Foundry, Cove as a possible cause of faunal differences. The results demonstrate that it is difficult to accurately predict, the effects of anthropogenic disturbances and restorations in complex natural systems and that unforeseen side effects are inevitable. Documenting these unpredicted effects and experimentally understanding their causes in past restorations will greatly improve the success and cost-effectiveness of future projects of a similar type.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.