Abstract

The effects of nonpulsatile flow on the aorta are unknown. Our aim was to examine the structure of the aorta from patients with continuous-flow left ventricular assist devices (LVADs) and directly measure aortic wall composition and stiffness. Age-matched aortic wall samples were collected from consecutive patients with heart failure (HF) at the time of transplantation and compared with nonfailing donor hearts. An unbiased stereological approach was used to quantify aortic morphometry and composition, and biomechanical testing was performed to determine the stress-strain relationship of the vessel. Data were obtained from 4 patients without a left ventricular assist device (HF group: mean age, 58.3±8.0 years), 7 patients with a continuous-flow LVAD (HF+LVAD group: mean, 57.7±5.6 years), and 3 nonfailing donors (mean, 53.3±12.9 years). Compared with HF, the aortic walls from HF+LVAD had an increase in wall thickness, collagen, and smooth muscle content accompanied by a reduction in elastin and mucinous ground-substance content. Stress-strain curves from the aortas revealed increased vessel stiffness in HF+LVAD compared with HF and nonfailing. The physiological modulus of the aorta progressively stiffened from 74.3±5.5 kPa in the nonfailing to 134.4±35.0 kPa in the HF to 201.7±36.4kPa in the HF+LVAD groups (P<0.001). Among continuous-flow LVAD patients without aortic valve opening, there are changes in the structure and composition of the aorta as well as an increase in aortic wall stiffness compared with age-matched HF patients and nonfailing donors. Further studies examining the role of nonpulsatile blood flow on aortic function and the potential resultant systemic sequelae are needed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.