Abstract

Background: Development of complementary foods by mixing plant-based (cereals, pulses, oilseeds, and others) ingredients and employing various processing techniques is widely reported. However, information on comparison of anti-nutritional factors and functional properties of extruded and unextruded complementary flours made from a multi-mix is limited. In this regard, this study aims to investigate the influence of extrusion cooking on anti-nutritional and functional properties of newly developed extruded oats, soybean, linseed, and premix composite complementary flours.Methods: Thirteen different blending ratios of oats, soybean, linseed, and premix were generated using a constrained D-optimal design of the experiment. Each of the 13 blends was divided into two groups: extrusion cooked and unextruded composite flour sample. Anti-nutritional and functional properties were determined using standard methods for both composite flours. ANOVA was used to determine if there was a significant difference for extruded and unextruded composite flours and paired t-tests were used to check variation between extruded and unextruded.Results: The phytate content of the extruded and unextruded composite flours was 158.93–191.33 mg/100 g and 175.06–203.10 mg/100 g, respectively, whereas the tannin content of the extruded and unextruded composite flours was 8.4–22.89 mg/100 g and 23.67–36.97 mg/100 g, respectively. There was a statistically significant (p < 0.05) difference among the extruded composite flours in terms of phytate and condensed tannin content. Paired t-test has indicated a significant (p < 0.05) difference between extruded and unextruded composite flours for phytate and tannin. Water absorption capacity and bulk density have shown a significant (p < 0.05) difference among extruded and unextruded composite flours. An increase in the proportion of soybean and linseed flour was associated with an increase in phytate, tannin, and water absorption capacity of composite flours. However, bulk density was increased with an increasing proportion of oat in the blend.Conclusion: The findings revealed that extrusion cooking significantly reduced phytate and condensed tannin content and improved the functional properties of the composite complementary food flour. Further investigation is needed on other anti-nutritional factors that are not included in this report.

Highlights

  • Child undernutrition remains pervasive and has severe health consequences in low-income and middle-income countries (Black et al, 2008)

  • Analysis of variance (ANOVA) indicates that there was a significant (p < 0.05) difference in phytate contents of extruded composite flours at the quadratic model; there was no significant difference for unextruded composite flour

  • The coefficient of determination (R2 values) of phytate contents of both extruded and unextruded composite flour indicated that the models could sufficiently predict the responses

Read more

Summary

Introduction

Child undernutrition remains pervasive and has severe health consequences in low-income and middle-income countries (Black et al, 2008). Studies indicate that communities characterized by higher rates of undernutrition are associated with consuming predominantly starchy staples, lower amounts of fruits and vegetables, legumes, and pulses, and little or no animal source foods. Starchy diets such as cereals, roots, and tubers are known to be bulky, with low nutrient density and mineral bioavailability; dependence on such diets leads to impaired growth and development (Kim et al, 2009). Complementary foods in developing countries are usually made in a form of cereal gruels, which are characterized by low energy density and protein due to the large volume of water relative to its solid matter contents (Inyang and Zakari, 2008; Igyor et al, 2011). This study aims to investigate the influence of extrusion cooking on anti-nutritional and functional properties of newly developed extruded oats, soybean, linseed, and premix composite complementary flours

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call