Abstract
Alternative splicing is known to be an important source of protein sequence variation, but its evolutionary impact has not been explored in detail. Studying alternative splicing requires extensive sampling of the transcriptome, but new data sets based on expressed sequence tags aligned to chromosomes make it possible to study alternative splicing on a genome-wide scale. Although genes showing alternative splicing by exon skipping are conserved as compared to the genome as a whole, we find that genes where structural differences between human and mouse result in genome-specific alternatively spliced exons in one species show almost 60% greater nonsynonymous divergence in constitutive exons than genes where exon skipping is conserved. This effect is also seen for genes showing species-specific patterns of alternative splicing where gene structure is conserved. Our observations are not attributable to an inherent difference in rate of evolution between these two sets of proteins or to differences with respect to predictors of evolutionary rate such as expression level, tissue specificity, or genetic redundancy. Where genome-specific alternatively spliced exons are seen in mammals, the vast majority of skipped exons appear to be recent additions to gene structures. Furthermore, among genes with genome-specific alternatively spliced exons, the degree of nonsynonymous divergence in constitutive sequence is a function of the frequency of incorporation of these alternative exons into transcripts. These results suggest that alterations in alternative splicing pattern can have knock-on effects in terms of accelerated sequence evolution in constant regions of the protein.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.