Abstract

Incubation of undifferentiated 3T3-F442A cells (preadipocytes) with 5'-N-ethylcarboxamidoadenosine (NECA) increases intracellular cyclic AMP in a dose-dependent manner. The effect of NECA is antagonized by 8-phenyltheophylline, but potentiated by 4-(3-butoxy-4-methoxybenzyl)-2-imidazolidine, an inhibitor of cyclic AMP phosphodiesterase. Incubation of preadipocytes with (-)-N6-(R-phenylisopropyl)adenosine (PIA) has no inhibitory effect on the basal concentration of cyclic AMP or on the stimulation of adenylate cyclase by isoprenaline or forskolin. Micromolar concentrations of PIA increase intracellular cyclic AMP, but with a lower potency than NECA. Similar findings are obtained with the non-differentiating cell line 3T3-C2. Thus preadipocyte 3T3-F442A cells and 3T3-C2 cells appear to express only stimulatory adenosine receptors. For some time after 3T3-F442A cells have differentiated to adipocytes, micromolar concentrations of NECA and PIA continue to increase cyclic AMP to a similar extent to that in preadipocytes, whereas nanomolar concentrations of PIA decrease the stimulatory effects of isoprenaline and forskolin on adenylate cyclase by 50%. However, several days after differentiation, the adipocytes gradually lose the major part of their positive response to NECA and reach a steady response to NECA 10 days after differentiation. The inhibition of adenylate cyclase caused by PIA remains constant for at least 2 weeks after differentiation. With membranes derived from the cells, the effects of NECA and PIA depend on GTP. These results indicate that, during the differentiation of 3T3-F442A cells to adipocytes, new inhibitory adenosine receptors are expressed, whereas the stimulatory receptors become attenuated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.