Abstract

To understand the effects of biochar and urea on soil N availability and plant growth, we conducted a pot experiment growing barley (Hordeum vulgare L.) under six treatments: control (N0), soil with 30 g kg−1 biochar (N0B), soil with 0.23 g kg−1 urea (N1), soil with 0.23 g kg−1 urea and 30 g kg−1 biochar (N1B), soil with 0.46 g kg−1 urea (N2), and soil with 0.46 g kg−1 urea and 30 g kg−1 biochar (N2B). The nitrifying community abundance and compositions in rhizosphere and bulk soils were analyzed using quantitative polymerase chain reaction (qPCR) and amplicon-based Illumina Hiseq sequencing. Adding urea with biochar (N1B) produced the greatest increase in above- and belowground plant biomass, followed by doubling the amount of urea with biochar (N2B); both treatments raised pH (p < 0.001) and lowered extractable N in the rhizosphere (p < 0.05). N1B treatment produced the greatest increase in ammonia-oxidizing bacteria (AOB) amoA gene copies, presumably because the combined amendment raised soil pH, which favored AOB access to NH4+. Nitrifier sequences were selected after blasting with reported nitrifiers in NCBI (similarity ≥ 97%). Nitrosospira dominated AOB communities during the plant seedling stage; however, during the mature stage, Nitrosomonas dominated over Nitrosospira and the nitrite-oxidizing bacteria (NOB) community became diverse. Redundancy analysis indicated that nitrifying community composition was affected by multiple soil properties, including N availability (i.e., exchangeable NH4+ and NO3−) and soil chemistry (i.e., pH, dissolved organic C, and exchangeable base cations). Our research suggests a positive application of combining biochar with urea in improving N bioavailability and promoting plant growth in the acidic soil.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call