Abstract
High-manganese Hadfield cast steel is commonly used for machine components operating under dynamic load conditions. The high fracture toughness and abrasive wear resistance of this steel are the result of an austenitic structure, which—while being ductile—at the same time tends to surface harden under the effect of cold work. Absence of dynamic loads (e.g., in the case of sand abrasion) causes rapid and premature wear of parts. To improve the abrasive wear resistance of high-manganese cast steel for operation under the conditions free from dynamic loads, primary niobium carbides are produced in this cast steel during the melting process to obtain in castings, after melt solidification, the microstructure consisting of an austenitic matrix and primary niobium carbides uniformly distributed in this matrix. The measured hardness of the tested samples as cast and after solution heat treatment is 260–290 HV and is about 30–60 HV higher than the hardness of common Hadfield cast steel, which is 230 HV. Compared to common Hadfield cast steel, the abrasive wear resistance of the tested high-manganese cast steel measured in the Miller test is at least three times higher at the niobium content of 3.5 wt%. Increasing the niobium content to 4.5 wt%. in the tested samples increases this wear resistance even more.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.