Abstract

Hydrochars were obtained by hydrothermal carbonization treatment of municipal sewage sludge. Effects of reaction temperature (180–300 °C) and reaction time (2–15 h) on structural characteristics of the hydrochars, and changes and release risk of typical pharmaceuticals and personal care products (PPCPs) in the hydrochars were investigated. Reaction temperature played a more important role than reaction time on hydrochar properties and decarboxylation reaction was the primary process during the converting of sludge to hydrochars. The sludge hydrochars had higher yields, carbon recovery rates, polarity and less aromaticity than biochars. Hydrothermal process reduced PPCPs’ load in sludge hydrochars effectively except caffeine and acetaminophen. The hydrochars prepared at intermediate and high temperatures (240 and 300 °C) had higher caffeine concentrations than the original sludge, which can be ascribed to the transformation of N-containing precursors. The highest CaCl2 extracted caffeine concentration occurred at intermediate temperature of 240 °C (48.1 μg/kg) due to the stronger affinity of caffeine in the high-temperature hydrochars. Caffeine was not detected in hydroxypropyl-β-cyclodextrin (HPCD) extract. Hydrochars prepared at low temperature (180 °C) had a higher acetaminophen concentration than the original sludge, which was attributed to the high thermal stability temperature of acetaminophen. Low- and intermediate-temperature hydrochars had higher CaCl2 extracted acetaminophen concentrations. The HPCD extracted acetaminophen was low with a range of nd to 6.72 μg/kg. In conclusion, PPCPs are less likely to constitute a limiting factor on the farm application of sludge hydrochar. This study provides theoretical support for the safe application of sludge hydrochar in the farmland.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call