Abstract

We undertook a systematic evaluation of spike rates and spike amplitudes of auditory nerve fiber (ANF) responses to trains of electric current pulses. Measures were obtained from acutely deafened cats to examine time-related changes free from the effects of hair-cell and synaptic adaptation. Such data relate to adaptation that likely occurs in ANFs of cochlear-implant users. A major goal was to determine and compare rate adaptation observed at different pulse rates (primarily 250, 1000, and 5000 pulse/s) and describe them using decaying exponential models similar to those used in acoustic studies. Rate-vs.-time functions were best described by two-exponent models and produced time constants similar to (although slightly greater than) the "rapid" and "short-term" components described in acoustic studies. There was little dependence of these time constants on onset spike rate, but pulse-rate effects were noted. Spike amplitude changes followed a time course different from that of rate adaptation consistent with a process related to ANF interspike intervals. The fact that two time constants governed rate adaptation in electrically stimulated and deafened fibers suggests that future computational models of adaptation should not only include hair cell and synapse components, but also components determined by fiber membrane characteristics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.