Abstract

When verifying that a communications network fulfills its specified performance, it is critical to note sudden shifts in network behavior as quickly as possible. Change point detection methods can be useful in this endeavor, but classical methods rely on measuring with a fixed measurement period, which can often be suboptimal in terms of measurement costs. In this paper, we extend the existing framework of change point detection with a notion of physical time. Instead of merely deciding when to stop, agents must now also decide at which future time to take the next measurement. Agents must now minimize the necessary number of measurements pre- and post-change, while maintaining a trade-off between post-change delay and false alarm rate. We establish, through this framework, the suboptimality of typical periodic measurements and propose a simple alternative, called crisis mode agents. We show analytically that crisis mode agents significantly outperform periodic measurements schemes. We further verify this in numerical evaluation, both on an array of synthetic change point detection problems as well as on the problem of detecting traffic load changes in a 5G test bed through end-to-end RTT measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.