Abstract

We consider a sequence of multinomial data for which the probabilities associated with the categories are subject to abrupt changes of unknown magnitudes at unknown locations. When the number of categories is comparable to or even larger than the number of subjects allocated to these categories, conventional methods such as the classical Pearson’s chi-squared test and the deviance test may not work well. Motivated by high-dimensional homogeneity tests, we propose a novel change-point detection procedure that allows the number of categories to tend to infinity. The null distribution of our test statistic is asymptotically normal and the test performs well with finite samples. The number of change-points is determined by minimizing a penalized objective function based on segmentation, and the locations of the change-points are estimated by minimizing the objective function with the dynamic programming algorithm. Under some mild conditions, the consistency of the estimators of multiple change-points is established. Simulation studies show that the proposed method performs satisfactorily for identifying change-points in terms of power and estimation accuracy, and it is illustrated with an analysis of a real data set.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.