Abstract

This paper addresses the problem of change-point detection in sequences of high-dimensional and heterogeneous observations, which also possess a periodic temporal structure. Due to the dimensionality problem, when the time between change points is of the order of the dimension of the model parameters, drifts in the underlying distribution can be misidentified as changes. To overcome this limitation, we assume that the observations lie in a lower-dimensional manifold that admits a latent variable representation. In particular, we propose a hierarchical model that is computationally feasible, widely applicable to heterogeneous data and robust to missing instances. Additionally, the observations’ periodic dependencies are captured by non-stationary periodic covariance functions. The proposed technique is particularly well suited to (and motivated by) the problem of detecting changes in human behavior using smartphones and its application to relapse detection in psychiatric patients. Finally, we validate the technique on synthetic examples and we demonstrate its utility in the detection of behavioral changes using real data acquired by smartphones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.