Abstract

BackgroundFew studies have evaluated health impacts, especially biomarker changes, following implementation of a new environmental policy. This study examined changes in water fluoride, urinary fluoride (UF), and bone metabolism indicators in children after supplying low fluoride public water in endemic fluorosis areas of Southern China. We also assessed the relationship between UF and serum osteocalcin (BGP), calcitonin (CT), alkaline phosphatase (ALP), and bone mineral density to identify the most sensitive bone metabolism indicators related to fluoride exposure.MethodsFour fluorosis-endemic villages (intervention villages) in Guangdong, China were randomly selected to receive low-fluoride water. One non-endemic fluorosis village with similar socio-economic status, living conditions, and health care access, was selected as the control group. 120 children aged 6-12 years old were randomly chosen from local schools in each village for the study. Water and urinary fluoride content as well as serum BGP, CT, ALP and bone mineral density were measured by the standard methods and compared between the children residing in the intervention villages and the control village. Benchmark dose (BMD) and benchmark dose lower limit (BMDL) were calculated for each bone damage indicator.ResultsOur study found that after water source change, fluoride concentrations in drinking water in all intervention villages (A-D) were significantly reduced to 0.11 mg/l, similar to that in the control village (E). Except for Village A where water change has only been taken place for 6 years, urinary fluoride concentrations in children of the intervention villages were lower or comparable to those in the control village after 10 years of supplying new public water. The values of almost all bone indicators in children living in Villages B-D and ALP in Village A were either lower or similar to those in the control village after the intervention. CT and BGP are sensitive bone metabolism indicators related to UF. While assessing the temporal trend of different abnormal bone indicators after the intervention, bone mineral density showed the most stable and the lowest abnormal rates over time.ConclusionsOur results suggest that supplying low fluoride public water in Southern China is successful as measured by the reduction of fluoride in water and urine, and changes in various bone indicators to normal levels. A comparison of four bone indicators showed CT and BGP to be the most sensitive indicators.

Highlights

  • Few studies have evaluated health impacts, especially biomarker changes, following implementation of a new environmental policy

  • Shangnan village (E) of Jingdu town served as the control village and was selected based on its non-endemic fluorosis status as well as its similarity in demographics, dietary habits and life styles (eating porridge, rice, fish, and drinking a lot of high concentration of “Wulong” or “Tieguanyin” (Wulong green tea), similar geographic areas, similar health status, and similar medical insurance (New Cooperative Medical System sponsored by local government), in villages A, B, C and D

  • The data showed that the concentration of fluoride in the control village changed minimally during this period while the fluoride levels in drinking water at the intervention villages (B, C and D) declined by 95.8%-98.0%,to levels similar to the control village (0.11 mg/l) (t=1.567, P=0.215)

Read more

Summary

Introduction

Few studies have evaluated health impacts, especially biomarker changes, following implementation of a new environmental policy. This study examined changes in water fluoride, urinary fluoride (UF), and bone metabolism indicators in children after supplying low fluoride public water in endemic fluorosis areas of Southern China. Chronic ingestion of high doses of fluoride has a number of adverse effects on human health, including dental fluorosis and skeletal fluorosis [4,5], increased bone fractures, decreased birth rates, increased rates of urolithiasis (kidney stones), impaired thyroid function, and lower intelligence in children [6,7]. According to China’s national prevention plan (2004-2010) [14] for key endemic diseases, in the year 2003, there were about 3 million people suffering from skeletal fluorosis due to exposure during childhood to excessive fluoride in local underground water. Our study, conducted in 2001-2002 in Guangdong province, showed that there were 396 villages with drinking water- related endemic fluorosis affecting a total population of 502,400. The water fluoride concentrations were much higher than the national standard of 1.0 mg/l, ranging from 1.0 mg/l to 11.6 mg /l, and the prevalence of dental fluorosis was 62% among children aged 8-15 years [17,18,19]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.