Abstract

The properties of a halogen-covered platinum(111) surface have been studied by using density functional theory (DFT), because halides are often present at electrochemical electrode/electrolyte interfaces. We focused in particular on the halogen-induced work function change as a function of the coverage of fluorine, chlorine, bromine and iodine. For electronegative adsorbates, an adsorption-induced increase of the work function is usually expected, yet we find a decrease of the work function for Cl, Br and I, which is most prominent at a coverage of approximately 0.25 ML. This coverage-dependent behavior can be explained by assuming a combination of charge transfer and polarization effects on the adsorbate layer. The results are contrasted to the adsorption of fluorine on calcium, a system in which a decrease in the work function is also observed despite a large charge transfer to the halogen adatom.

Highlights

  • In electrochemistry, processes at the interface between an electron conductor, the electrode, and an ion conductor, the electrolyte, are studied [1]

  • We have shown that the strong polarizability of large atoms such as iodine leads to a considerable buildup of charge in the adatom–surface bonding regions, which is consistent with covalent bonding, and an accompanying electron depletion region far from the surface which creates a net dipole on the adatom that in turn promotes a decrease in the work function

  • The change of the work function induced by halogen adsorption on Pt(111) as a function of the coverage was studied by electronic structure calculations

Read more

Summary

Introduction

Processes at the interface between an electron conductor, the electrode, and an ion conductor, the electrolyte, are studied [1]. In order to be charge neutral, the electrolyte contains equal amounts of anions and cations. Protons acting as cations are always present [2] whereas halides are often chosen as anions. The characteristics of the solvent significantly affects processes such as adsorption and desorption. Because of the strong interaction of halogen atoms with metal electrodes, the metal electrodes typically become halogen-covered through specific adsorption. These adsorbed anions are part of the electrochemical double layer, in general they change the work function of Beilstein J.

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.