Abstract

Polycrystalline CeRhGe was prepared via arc-melting of the elements. Its TiNiSi-related structures (space groups Pnma) were studied by powder diffraction using synchrotron radiation over the temperature range of 315–770 K. CeRhGe shows a first-order structural phase transition at 520 K upon heating. Ab initio elelectronic structure calculations give evidence for the depletion of the cerium 4f band in HT-CeRhGe and in consequence a redistribution of the electron density from the cerium to the rhodium atoms. Purely trivalent cerium atoms in the low-temperature modification (LT) change to intermediate-valent cerium in the high-temperature modification (HT). The integrated crystal orbital Hamilton populations show an enhancement of the Ce–Rh bonding in HT-CeRhGe. The three-dimensional [RhGe] polyanionic network shows drastic puckering of the [Rh3Ge3] hexagons in LT-CeRhGe and a flattening in HT-CeRhGe. The cerium valence change is accompanied by a drastic jump in the lattice parameters: a = 7.42249(8), b = 4.46699(5) and c = 7.1276(1) Å at 315 K vs. a = 7.24579(6), b = 4.47506(4) and c = 7.43579(6) Å at 570 K. Large shifts occur for the x parameter of the rhodium and the z parameter of the cerium atomic positions (Wyckoff sites 4c (x 1/4 z)).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call