Abstract

Changes in quantal size and in the parameters of release were examined in chromaffin cells using amperometric recordings during and following various stimuli that induce secretion. As a general rule, a greater quantal content was associated with a greater quantal size. Following a short depolarizing pulse (0.5-2 s; 100 mV from a holding potential of -80 mV), the mean value of quantal size increased by 54% over several seconds before gradually (over tens of seconds) returning toward the control value, whilst its variability rose by 62%. The changes observed following 30-s applications of high extracellular K+ (50 mM) were more modest. A rapid application of short depolarizing pulses (2 s every 10-20 s; 100 mV from a holding potential of -80 mV) also led, at least initially, to greater quantal content and quantal size. Mean quantal size rose initially by 68%, but decreased subsequently to 31% below pre-stimulation levels. In whole-clamped cells, the frequency of quantal release can rise abruptly, probably owing to a mechanical disturbance that makes the membrane leaky to Ca2+. In such cases, a marked rise in quantal content (>ten-fold) was paralleled by an almost as dramatic (up to ten-fold) rise in quantal size and an important, although less pronounced and slower, rise in its variability (up to four-fold). The return toward control values of mean quantal size occurred over several minutes, whilst its variability decayed more slowly. The release parameters were evaluated directly from the number of events to avoid a large and time-dependent contribution of the amplitude variability of spontaneous amperometric current spikes (minis). In general, the greater probability of release contributed more than the greater size of the immediately available store to the increase in quantal output. In conclusion, quantal size was found to be highly labile. Its change can alter strongly the facilitation and depression of evoked quantal output and probably occurs due to a preferential release of large vesicles that are more efficient barriers to Ca2+ diffusion when Ca2+ rises rapidly following a synchronous opening of several Ca2+ channels. When intracellular Ca2+ levels rise slowly to threshold levels for secretion, as during an asynchronous and generally spontaneous release, vesicles are less effective diffusion barriers and quantal size changes less.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call