Abstract

Freshly synthesized polycrystalline Pr0.4Ca0.6MnO3 sample has been analyzed by employing X-ray diffraction, magnetization and impedance spectroscopic techniques. Magnetization M(T) showed charge ordering (TCO) around 268K and below this temperature variation of magnetic and electric field effects is discussed. With the decrease of temperature, the change in the size and shape of the impedance plane plot is explored in terms of modulation of different relaxation processes. An equivalent circuit model (RQ) is used to determine the electrical parameters of Pr0.4Ca0.6MnO3 sample at different temperatures. Impedance of grain boundaries derived from the fitting of experimental data using an equivalent circuit model shows a change in conduction mechanism from small polaron hopping (SPH) to the variable range hopping (VRH) model around 148K. Activation energies calculated from the SPH model and relaxation frequencies of imaginary part of impedance are compared and discussed. Average normalized change (ANC) deduced from the impedance data illustrates a change in conduction mechanism around 148K due to the superexchange networks of Mn3+ and Mn4+.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.