Abstract

We investigated the characteristics of n-GaN/Hf0.64Si0.36Ox/Pt MOS capacitors fabricated by post-deposition annealing (PDA) at 800 °C in O2 (PDO), N2 (PDN), and 3%H2 (PDH) ambients. After PDO, the Hf0.64Si0.36Ox film was partially crystallized and had a thick interfacial layer (6.3 nm) at the n-GaN/Hf0.64Si0.36Ox interface, while the Hf0.64Si0.36Ox films after PDN and PDH maintained an amorphous structure. Furthermore, the n-GaN/Hf0.64Si0.36Ox/Pt MOS capacitors produced by PDN and PDH exhibited superior characteristics, such as a small flat-band voltage (Vfb) hysteresis of +50 mV and + 25 mV, a small Vfb shift of 0.74 V and − 0.06 V, high dielectric constants of 15.1 and 16.0, and high breakdown electric fields of 8.7 and 9.1 MV/cm, respectively. However, the PDH capacitor exhibited an order of magnitude larger Dit than the PDN capacitor, suggesting that a Ga2O3 intermediate layer at n-GaN/Hf0.64Si0.36Ox interface may be decomposed after PDH and results in significant Ga diffusion into the Hf0.64Si0.36Ox films and electrical defects generation at n-GaN/Hf0.64Si0.36Ox interface. These strongly indicate that the PDN process can produce superior Hf0.64Si0.36Ox films for use as gate dielectrics in GaN power devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call