Abstract

Achilles tendon vibration generates proprioceptive information that is incongruent with the actual body position; it alters the perception of body orientation leading to a vibration-induced postural response. When a person is standing freely, vibration of the Achilles tendon shifts the internal representation of the verticality backward thus the vibration-induced postural response realigned the whole body orientation with the shifted subjective vertical. Because utricular otoliths information participates in the creation of the internal representation of the verticality, changing the natural orientation of the head-neck system during Achilles tendon vibration could alter the internal representation of the earth vertical to a greater extent. Consequently, it was hypothesized that compared to neutral head-neck orientation, alteration in the head-neck orientation should impair balance control immediately after Achilles tendon vibration onset or offset (i.e., sensory transition) as accurate perception of the earth vertical is required. Results revealed that balance control impairment was observed only immediately following Achilles tendon vibration offset; both groups with the head-neck either extended or flexed showed larger body sway (i.e., larger root mean square scalar distance between the center of pressure and center of gravity) compared to the group with the neutral head-neck orientation. The fact that balance control was uninfluenced by head-neck orientation immediately following vibration onset suggests the error signal needs to accumulate to a certain threshold before the internal representation of the earth vertical becomes incorrect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call