Abstract

ZnO plays an important role in many techno- logical aspects of semiconductors. Because of its interesting properties, it has attracted a great deal of attention for a wide range of applications. In this work, the direct precipitation method was employed for the synthesis of ZnO nanoparticles to study the role of different concentration ratios of reactants on the crystal structure, size, and morphology of the prepared ZnO nanoparticles. The reactant raw materials used in this experiment were zinc acetate dihydrate as a zinc source and NaOH. ZnO nanoparticles were synthesized by calcination of the ZnO precursor precipitates at 250 Cf or 3 h. These calcinated ZnO nanoparticles and their properties were characterized using X-ray diffraction, a scanning electron microscope equipped with an energy dispersive X-ray spectrometer, and transmission electron microscopy. We present the experiment conditions, including result on the different reactant concentration ratios, which affect the control of the size and morphology of the ZnO nanoparticles. The mean size of the ZnO nanoparticles was 18 nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.