Abstract

Quantifying changes in soil C may be an important consideration under large-scale afforestation or reforestation. We reviewed global data on changes in soil C following afforestation, available from 43 published or unpublished studies, encompassing 204 sites. Data were highly variable, with soil C either increasing or decreasing, particularly in young (<10-year) forest stands. Because studies varied in the number of years since forest establishment and the initial soil C content, we calculated change in soil C as a weighted-average (i.e. sum of C change divided by sum of years since forest establishment) relative to the soil C content under previous agricultural systems at <10, >10 and <30 cm sampling depths. On average, soil C in the <10 cm (or <30 cm) layers generally decreased by 3.46% per year (or 0.63% per year) relative to the initial soil C content during the first 5 years of afforestation, followed by a decrease in the rate of decline and eventually recovery to C contents found in agricultural soils at about age 30. In plantations older than 30 years, C content was similar to that under the previous agricultural systems within the surface 10 cm of soil, yet at other sampling depths, soil C had increased by between 0.50 and 0.86% per year. Amounts of C lost or gained by soil are generally small compared with accumulation of C in tree biomass. The most important factors affecting change in soil C were previous land use, climate and the type of forest established. Results suggest that most soil C was lost when softwoods, particularly Pinus radiata plantations, were established on ex-improved pastoral land in temperate regions. Accumulation of soil C was greatest when deciduous hardwoods, or N 2-fixing species (either as an understorey or as a plantation), were established on ex-cropped land in tropical or subtropical regions. Long-term management regimes (e.g. stocking, weed control, thinning, fertiliser application and fire management) may also influence accumulation of soil C. Accumulation is maximised by maintaining longer (20–50 years) forest rotations. Furthermore, inclusion of litter in calculations reversed the observed average decrease in soil C, so that amount of C in soil and litter layer was greater than under preceding pasture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call