Abstract
The effects of a short-term (80 min) exposure to 222 µM aluminum (Al) on the protein content and expression and on peroxidase activity and isoenzymes in the primary root of maize were evaluated. Two inbred lines differing in their level of tolerance to Al were used: Cateto 237 (tolerant) and L36 (sensitive). The apical 20 mm of the primary root was divided into 2-mm-long segments that were analyzed for total protein content and peroxidase activity. These results demonstrate that the total protein content along the root apex was not affected by Al in the tolerant inbred line, but decreased in the sensitive line. In the apical 2 mm of the root of the sensitive line, the expression of low molecular weight proteins (43 kDa or smaller) was decreased. Expression of low molecular proteins increased in the tolerant inbred line, even though total protein content did not increase. This suggests that some of these proteins could play a role in metal tolerance, perhaps as binding peptides. While the peroxidase activity of the tolerant inbred line did not change with exposure to Al, peroxidase activity in the apical 6 mm of the root of the sensitive line decreased. The tolerant inbred line constitutively expressed more anionic peroxidase isoforms. These results demonstrate that maintenance of protein expression may be an important component of the plant's resistance to Al stress, and that resistance to Al stress is associated with the higher expression of anionic peroxidase isoforms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.