Abstract
High irrigation rates are commonly used during ureteroscopy and can increase intrarenal pressure (IRP) substantially. Concerns have been raised that elevated IRP may diminish renal blood flow (RBF) and perfusion of the kidney. Our objective was to investigate the real-time changes in RBF while increasing IRP during Ureteroscopy (URS) in an in-vivo porcine model. Four renal units in two porcine subjects were used in this study, three experimental units and one control. For the experimental units, RBF was measured by placing an ultrasonic flow cuff around the renal artery, while performing ureteroscopy in the same kidney using a prototype ureteroscope with a pressure sensor at its tip. Irrigation was cycled between two rates to achieve targeted IRPs of 30mmHg and 100mmHg. A control data set was obtained by placing the ultrasonic flow cuff on the contralateral renal artery while performing ipsilateral URS. At high IRP, RBF was reduced in all three experimental trials by 10-20% but not in the control trial. The percentage change in RBF due to alteration in IRP was internally consistent in each porcine renal unit and independent of slower systemic variation in RBF encountered in both the experimental and control units. RBF decreased 10-20% when IRP was increased from 30 to 100mmHg during ureteroscopy in an in-vivo porcine model. While this reduction in RBF is unlikely to have an appreciable effect on tissue oxygenation, it may impact heat-sink capacity in vulnerable regions of the kidney.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.