Abstract

Cardiac surgery-associated acute kidney injury (CSA-AKI) is a common yet serious complication that is closely related to cardiopulmonary bypass (CPB). Extracellular cold-inducible RNA-binding protein (eCIRP) can mediate aseptic inflammation and trigger intracellular oxidative stress. In the present study, expression of serum CIRP was significantly elevated post-CPB (785.0 ± 640.5 pg/mL vs. 149.5 ± 289.1 pg/mL, P < 0.001) and was positively correlated with CPB duration (r = 0.502, P < 0.001). Patients with high expression of CIRP had higher risks of postoperative AKI than patients with low CIRP expression (OR: 1.67, 95% CI 1.04-2.68). In a rat CPB model, the serum CIRP concentration increased significantly after CPB. Similarly, the levels of Scr and BUN significantly increased 4 hours after CPB. KIM-1 and NGAL mRNA levels in the CPB group were 8.2 and 4.3 times higher than the sham group, respectively. In addition, the levels of inflammatory cell infiltration, oxidative stress, and apoptosis in the renal tissue of the CPB group were significantly higher compared to the sham group. The expression levels of serum inflammatory factors at 4 hours post-CPB were also increased. Administration of recombinant human CIRP protein promoted the expression of NADPH oxidase via the TLR-4/MyD88 pathway, aggravated intracellular oxidative stress, mediated mitochondrial dynamics disorder, and eventually increased apoptosis in HK-2 cells. However, the CIRP inhibitor C23 improved the CIRP-mediated oxidative stress and mitochondrial dysfunction in both rat and cell models. In summary, elevated CIRP could mediate oxidative stress and mitochondrial dynamics in the kidney to promote CSA-AKI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call