Abstract

BackgroundMammalian sirtuins are homologs to the yeast silent information regulator 2 (Sir2), which is an NAD-dependent deacetylase. Sirtuins are comprised of 7 proteins, and each has different target proteins. Sirtuin 1 (SIRT1) plays important roles in maintaining metabolic functions and immune responses, and SIRT3 protects cells from oxidative stress-induced cell death. Both SIRT1 and SIRT3 are regulated by metabolic status and aging. Hence, SIRT1 and SIRT3 have been researched in metabolic diseases, such as type 2 diabetes mellitus (DM), fatty liver, and heart diseases. Although these diseases have been increasing, there is little information about relation between the diseases and SIRT1 and SIRT3 in cats. Therefore we cloned SIRT1 and SIRT3 cDNA, examined mRNA expression in cat tissues, and investigated the changes in SIRT1 and SIRT3 mRNA expression in peripheral blood leukocyte of cats fed on HFD for 6 weeks.ResultsCat SIRT1 and SIRT3 contained a catalytic core region and showed high sequence homology with other vertebrate SIRT1 (>61.3%) and SIRT3 (>65.9%) amino acids. Real-time polymerase chain reaction analyses revealed that high expression levels were observed in the liver and skeletal muscle for SIRT1 and in the heart for SIRT3 in cats. In addition, both cat SIRT1 and SIRT3 expression levels in the pancreas were different between individuals. Cat SIRT1 mRNA expression in peripheral blood leukocytes was significantly elevated in obese cats fed on HFD (P < 0.05).ConclusionsCat SIRT1 and SIRT3 genes are highly conserved among vertebrates, and HFD feeding may be related to SIRT1 mRNA expression mechanisms in cat peripheral blood leukocytes.

Highlights

  • Mammalian sirtuins are homologs to the yeast silent information regulator 2 (Sir2), which is an NADdependent deacetylase

  • The cat Sirtuin 1 (SIRT1) cDNA consisted of a 63 bp 5′-untranslated region (UTR), a 2241 bp open reading frame (ORF), which encoded a 746 amino acids, and a 1781 bp 3′-UTR

  • Cat SIRT1 and SIRT3 mRNA was expressed in various tissues similar to other animals, and high expression levels were observed in the liver and skeletal muscle for SIRT1 and in the heart for SIRT3 in cats

Read more

Summary

Introduction

Mammalian sirtuins are homologs to the yeast silent information regulator 2 (Sir2), which is an NADdependent deacetylase. Sirtuin 1 (SIRT1) plays important roles in maintaining metabolic functions and immune responses, and SIRT3 protects cells from oxidative stress-induced cell death. Both SIRT1 and SIRT3 are regulated by metabolic status and aging. SIRT1 and SIRT3 have been researched in metabolic diseases, such as type 2 diabetes mellitus (DM), fatty liver, and heart diseases These diseases have been increasing, there is little information about relation between the diseases and SIRT1 and SIRT3 in cats. Mammalian sirtuins have been identified as homologs of the yeast silent information regulator 2 (Sir2) [1], which is an NAD-dependent deacetylase and related to metabolism and longevity in yeast [2]. The aims of this study were to determine the cDNA sequences, and examine the SIRT1 and SIRT3 mRNA expression in several tissues (Experiment 1), and to investigate the effects of feeding a high-fat diet (HFD) on the SIRT1 and SIRT3 expression (Experiment 2) in cats

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call