Abstract

Bicelles, composed of a mixture of long and short chain lipids, form nanostructured molecular assemblies that are attractive lipid-membrane mimics for in vitro studies of integral membrane proteins. Here we study the effect of a third component, the single chain detergent n-dodecyl-β-d-maltoside (DDM) on the morphology of bicelles composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 3-[(3-cholamidopropyl)dimethylammonio]-2-hydroxy-1-propanesulfonate (CHAPSO) below (10 °C) and above (38 °C) the phase transition. In the absence of DDM, bicelles convert from ellipsoidal disks at 10 °C to extended ribbon-like structures at 38 °C. The addition of DDM reshapes the ellipsoidal disc to a circular one and the flattened ribbon to a circular-cylinder worm-like micelle. Knowledge of the influence of the single chain detergent DDM on bicelle nanoscale morphology contributes toward comprehending lipid membrane self-organization and to the goal of optimizing lipid mimics for membrane biology research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.