Abstract
Cells adapt to chronic extracellular hypotonicity by altering metabolism. Corresponding effects of sustained hypotonic exposure at the whole-person level remain to be confirmed and characterized in clinical and population-based studies. This analysis aimed to 1) describe changes in urine and serum metabolomic profiles associated with four weeks of sustained > +1 L/d drinking water in healthy, normal weight, young men, 2) identify metabolic pathways potentially impacted by chronic hypotonicity, and 3) explore if effects of chronic hypotonicity differ by type of specimen and/or acute hydration condition. Untargeted metabolomic assays were completed for specimen stored from Week 1 and Week 6 of the Adapt Study for four men (20-25 years) who changed hydration classification during that period. Each week, first-morning urine was collected after overnight food and water restriction, and urine (t+60 min) and serum (t+90 min) were collected after a 750 mL bolus of drinking water. Metaboanalyst 5.0 was used to compare metabolomic profiles. In association with four weeks of > + 1 L/d drinking water, urine osmolality decreased below 800 mOsm/kg H2O and saliva osmolality decreased below 100 mOsm/kg H2O. Between Week 1 and Week 6, 325 of 562 metabolic features in serum changed by 2-fold or more relative to creatinine. Based on hypergeometric test p-value <0.05 or Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway impact factor >0.2, the sustained > + 1 L/d of drinking water was associated with concurrent changes in carbohydrate, protein, lipid, and micronutrient metabolism, a metabolomic pattern of carbohydrate oxidation via the tricarboxylic acid (TCA) cycle, instead of glycolysis to lactate, and a reduction of chronic disease risk factors in Week 6. Similar metabolic pathways appeared potentially impacted in urine, but the directions of impact differed by specimen type. In healthy, normal weight, young men with initial total water intake below 2 L/d, sustained > + 1 L/d drinking water was associated with profound changes in serum and urine metabolomic profile, which suggested normalization of an aestivation-like metabolic pattern and a switch away from a Warburg-like pattern. Further research is warranted to pursue whole-body effects of chronic hypotonicity that reflect cell-level effects and potential beneficial effects of drinking water on chronic disease risk.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.