Abstract

Collagen and elastin are the primary load-bearing components of arteries. Elastin is a low strength, highly elastic, fibrous material and collagen is a stiffer material, generally present as wavy fibers when unstretched. Together, they account for the material response of arteries under tensile load. Arteries, and other soft tissues, exhibit a two-part material response to tensile load. There is an initial low stiffness response at low stretch followed by a high stiffness response at higher stretch. It has been proposed that the low stiffness response is dominated by the elastin in the material and the high stiffness response is dominated by collagen [1]. The elastin accounts for the initial low stiffness response of the material, until the wavy collagen fibers straighten and become engaged, at which point the material transitions to its higher stiffness response. It is important to understand the role of the individual collagen and elastin components and how they contribute to the overall mechanical response of the arteries. Further, it is important to understand how specific biochemical processes that occur with age and disease affect the mechanical response of the individual collagen and elastin components and consequently the overall mechanical response of the arteries. This knowledge will increase our understanding of arterial mechanical response and how this response changes arterial function in health and disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call