Abstract

The total solubility of alloying elements (chromium, titanium, aluminum) in the iron-nickel matrix (Fe – Ni) of 44NKhTYu alloy, depending on the number of cycles, does not occur during primary thermocycling processing (TCP). This is evidenced by the main replicas of the matrix with (111) reflection plane indexes of the samples X-ray images under the studied modes of thermocyclic processing. The maximum solubility of alloying elements is achieved only at total quenching. Special attention should be paid to the third and fourth cycles in the further study of TCP changing the cooling rate in these cycles due to the cooling medium, since with an increase in the number of cycles in the primary TCP, significant changes do not occur.

Highlights

  • The total solubility of alloying elements in the iron-nickel matrix (Fe – Ni) of 44NKhTYu alloy, depending on the number of cycles, does not occur during primary thermocycling processing (TCP). This is evidenced by the main replicas of the matrix with (111) reflection plane indexes of the samples X-ray images under the studied modes of thermocyclic processing

  • Special attention should be paid to the third and fourth cycles in the further study of thermocycling processing (TCP) changing the cooling rate in these cycles due to the cooling medium, since with an increase in the number of cycles in the primary TCP, significant changes do not occur

Read more

Summary

Introduction

The total solubility of alloying elements (chromium, titanium, aluminum) in the iron-nickel matrix (Fe – Ni) of 44NKhTYu alloy, depending on the number of cycles, does not occur during primary thermocycling processing (TCP).

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.