Abstract
In this study we show how the genetic variance of a quantitative trait changes in a self-fertilizing population under repeated cycles of truncation selection, with the analysis based on the infinitesimal model in which it is assumed that the trait is determined by an infinite number of unlinked loci without epistasis. The genetic variance is reduced not as a consequence of the genotypic frequency change but due to the build-up of linkage disequilibrium under truncation selection in this model. We assume that the order of the genotypic contribution from each locus is n-1/2, where n is the number of loci involved, and investigate the change in linkage disequilibrium resulting from selection and self-fertilization using genotypic frequency dynamics in order to analyze the change in the genetic variance. Our analysis gives recurrence relations of genetic variance among the succeeding generations for the three cases of gene action, i.e., purely additive action, pure dominance without additive effect and the presence of both additive effect and dominance, respectively. Numerical examples are also given as a check on the recurrence formulas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.