Abstract

The ontogeny of Epilobium hirsutum grown under natural summer photoperiod in a glasshouse was divided into vegetative, early transitional, transitional, and floral stages. Bijugate phyllotaxy, common to both the vegetative and early transitional stages, is transformed into spiral phyllotaxy during the transitional stage by an initial change in the divergence angle of a single primordium inserted at a unique level on the shoot. Leaf primordia subsequently are inserted in a spiral arrangement in the indeterminate floral shoot apex. The early transitional shoot apical meristem is about 1.5 times the volume of the vegetative meristem but expands at about two-thirds the relative plastochron rate of volume increment of the vegetative meristem. There are progressive decreases in the plastochron and relative plastochron rates of radial and vertical shoot growth through ontogeny. Relative chronological rates of shoot growth, however, are not altered during ontogeny. Spiral transformation results from changes in the relative points of insertion of leaf primordia on the shoot meristem. These changes are accompanied by an increased rate of primordia initiation on a more circular shoot meristem. The change in phyllotaxy during ontogeny is similar to that which was artificially induced by chemical modification of auxin concentration gradients in the shoot apex, with the additional feature that there is an initial increase in the volume of the shoot meristem prior to the natural spiral transformation. Size of the shoot apical meristem, however, appears to have little influence on Epilobium phyllotaxy; but the geometric shape of the meristem is well correlated with bijugate to spiral transformations. This suggests that geometric parameters of the shoot meristem should be considered in theoretical models of phyllotaxy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call